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Uncertainties associated with the structural model and measured vibration data may

lead to unreliable damage detection. In this paper, we show that geometric and

measurement uncertainty cause considerable problem in damage assessment which can

be alleviated by using a fuzzy logic-based approach for damage detection. Curvature

damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte

Carlo simulation (MCS) is used to study the changes in the damage indicator due to

uncertainty in the geometric properties of the beam. Variation in these CDF measures

due to randomness in structural parameter, further contaminated with measurement

noise, are used for developing and testing a fuzzy logic system (FLS). Results show that

the method correctly identifies both single and multiple damages in the structure. For

example, the FLS detects damage with an average accuracy of about 95 percent in a

beam having geometric uncertainty of 1 percent COV and measurement noise of 10

percent in single damage scenario. For multiple damage case, the FLS identifies damages

in the beam with an average accuracy of about 94 percent in the presence of above

mentioned uncertainties. The paper brings together the disparate areas of probabilistic

analysis and fuzzy logic to address uncertainty in structural damage detection.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since structural failure can lead to severe economic loss and loss of life, structural damage detection is of great interest
to many researchers. Modal-based methods are quite popular for damage detection due to their ease of practical
implementation [1,2]. A comprehensive review on modal-based methods is given by Montalvao et al. [1]. Modal methods
are based on the fact that the modal parameters (natural frequency, mode shape and modal damping) are functions of the
physical parameters (mass, stiffness and damping) and hence it is reasonable to assume that the existence of damage leads
to changes in the modal properties of the structure [1]. Damage detection procedures frequently inspect the change in
some parameter (e.g. curvature) that takes place when the structure is damaged. Typically, the ‘‘footprint’’, or baseline data
set used for comparison can be obtained either from data measured from the undamaged structure, or from a finite
element (FE) model of the undamaged structure [3]. The modal parameters used to detect structural damage include
frequency response functions (FRF), natural frequencies, mode shapes, mode shape curvatures (MSC), modal flexibility,
modal strain energy, etc. [4].

Among these modal parameters, natural frequency is widely used as it can be measured most conveniently and
accurately [5]. However, the use of natural frequencies for damage detection is limited for following reasons. First,
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significant damage may cause very small changes in natural frequencies, particularly for larger structures, and these
changes may go undetected due to measurement or processing errors. Moreover, variations in the mass of the structure or
measurement temperatures may introduce uncertainties in the measured frequency changes [6].

These difficulties with frequency damage indicators can be overcome to some extent by using changes in the mode
shapes of any given structure, which are more sensitive to local damage [7–10]. However, using mode shapes also has some
drawbacks. First, damage is a local phenomenon and may not significantly influence mode shapes of the lower modes that
are usually measured from vibration tests of large structures. Second, extracted mode shapes are affected by environmental
noise from ambient loads or inconsistent sensor positions. Third, the number of sensors and the choice of sensor
coordinates may have a crucial effect on the accuracy of the damage detection procedure [6].

Given the shortcomings of the frequency and mode shape damage indicators, some researchers used modal curvature
(MC) which is the second spatial derivative of the mode shape. Pandey et al. [11] concluded that the absolute changes in the
curvature mode shapes are localized in the region of damage and hence can be used to detect damage in a structure. The
changes in the curvature mode shapes increase with increasing size of damage.

Sahin and Shenoi [12] presented a damage detection algorithm using a combination of global (changes in natural
frequencies) and local (curvature mode shapes) vibration-based analysis data as input in artificial neural networks (ANNs)
for location and severity prediction of damage in beam-like structures. Ratcliffe and Bagaria [13] applied gapped smoothing
damage detection method to the modal curvature yielding a damage index, which was used for locating a delamination in a
composite beam. Hamey et al. [14] concluded about superiority of modal curvature-based methods over other methods by
evaluating various damage detection techniques in carbon/epoxy composite beams with several possible damage
configurations. Qiao et al. [15] carried out a study to evaluate dynamics-based damage detection techniques (i.e. simplified
gapped smoothing method, GSM; generalized fractal dimension, GFD and strain energy method, SEM) for composite
laminated plates using smart piezoelectric materials and modern instrumentation like scanning laser vibrometer (SLV).
They found that curvature-based methods performed very well for damage detection in composite plates.

Mode shape curvatures are however less reliable when employed for damage detection in structures with multiple
damages. All modes should be carefully examined in order to locate all existing faults. Some researchers have conducted
studies specifying the limitations of mode shape curvatures in damage detection. Curvature damage factor (CDF) is used for
such situations, in which the difference in modal curvature is averaged over all modes. Their studies demonstrated that
curvature damage factor accurately localizes the existing damage in a multiple damage scenario. Wahab and Roeck [16]
pointed out that the modal curvatures of the lower modes are in general more accurate than those of the higher ones. An
extensive measurement grid was required in order to get a good estimation for the higher MC. When more than one fault
existed in the structure, it was not possible to locate damage in all positions from the results of only one mode. They
proposed curvature damage factor and concluded that when the structure contained multiple damages, the CDF gave a
clear identification of these locations. Datta and Talukdar [17] also conclude in their study that CDF gave a clear
identification of damage locations, when the structure had multiple damages. Some researchers have proposed combined
approaches, in which more than one type of damage signature are used for damage localization. Guo and Zhang [18]
proposed a weighted balance evidence theory for localization of multiple damages in structures. They used changes in
frequencies and mode shapes as two different information sources, and local decisions were obtained by using the multiple
damage location assurance criterion (MDLAC) method and the frequency change damage detection method (FCDDM). They
employed evidence fusion theory to integrate these local decisions to make global decisions.

Although the studies on damage detection clearly show the capability of modal curvatures and curvature damage factor,
they largely ignored uncertainty issues in damage detection. Since uncertainty in the mode shape gets amplified due to the
two differentiation operators required to get the curvature, the solution of inverse problems using this method needs more
research.

In general, there are two types of uncertainties in structural dynamics. The first is aleatory or random uncertainty, which
occurs due to inherent variabilities or randomness in the system like uncertainty in material properties, geometric
properties, etc. The knowledge of experts cannot be expected to reduce aleatory uncertainty although their knowledge may
be useful in quantifying the uncertainty. This type of uncertainty is sometimes referred to as irreducible uncertainty. The
second type of uncertainty is called epistemic uncertainty and is also referred to as reducible uncertainty and covers
unmodeled physics [19]. It is possible to address epistemic uncertainty by sophisticated modeling and most research has
concentrated on alleviating epistemic uncertainty. However, aleatory uncertainty is particularly important in damage
detection but has been largely ignored.

Uncertainties associated with the mathematical characterization of a structure can lead to unreliable damage detection
[20]. Probabilistic analysis provides a tool for incorporating structural uncertainties in the analysis of frequency response
by generally describing the uncertainties as random variables. Collins et al. [21] addressed uncertainty in the structural
model by treating the initial structural parameters as normally distributed random variables. Random factor method (RFM)
and interval factor method (IFM) were proposed by Gao [22] for the analysis of natural frequencies and mode shapes of a
truss structure with uncertain physical parameters and geometry. Conventional Monte Carlo simulation (MCS) is the most
common and traditional method for a probabilistic analysis [23–25]. Hofer et al. [26] presented an MCS for addressing
aleatory uncertainty due to unpredictable variation in the system under study.

Some researchers have studied the effect of uncertainty in damage detection using vibration-based methods. Liu [27]
formulated an identification problem by minimizing the error-norm of the eigenequation and addressed the effect of
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measurement noise on damage detection. Fuzzy logic and continuum damage mechanics were used by Sawyer and Rao
[28] to process and analyze the uncertainties and complexities of damaged structure considering measurement noise.
Pawar and Ganguli [29] proposed a genetic fuzzy system for damage detection using natural frequencies in helicopter rotor
blades having uncertainties in measurement. Chandrashekhar and Ganguli [30] proposed a fuzzy logic system for damage
detection in structures having uncertainty in material property as well as measurements. However, these works involving
fuzzy logic were restricted to frequencies and did not use modal curvature as the damage indicator.

Selected research has addressed both measurement and model uncertainty. Yong and Hong [31] investigated the impact
of uncertainties both in measurements and in the FE model on damage detection using perturbation method. Bakhary et al.
[32] have also illustrated damage detection in structures using artificial neural networks considering uncertainties both in
the FE model and measured vibration data. Xia [20] proposed that the inaccuracy due to modeling and measurement error
can be overcome by taking into account the uncertainties through statistical methods. Again, these studies considered
frequency-based damage detection techniques.

When both the Young’s modulus and structural geometry are random, it is likely that randomness in geometry will
dominate randomness in Young’s modulus [33]. Hence, there is a need to address the effect of geometric uncertainties in FE
modeling as well as uncertainty due to measurement noise on modal curvature-based damage detection algorithms.

A damage detection problem is an inverse problem, when a damage is estimated by evaluating changes in the
structure’s response in the damaged state from undamaged state. Neural networks have been very popular for this purpose.
However, neural networks have the reputation of being black boxes that are difficult to understand and can also require
enormous computer time when the back-propagation algorithm is used. In contrast, fuzzy systems allow for easier
understanding as they are expressed in terms of linguistic variables [34]. Fuzzy systems have a built-in fuzzification process
at the front end that accounts for uncertainty and does not need to be trained on several cycles of noisy data like neural
networks to account for uncertainty [35].

Several other non-destructive techniques (acoustic emission, dye penetrant, stereo X-ray radiography, ultrasonics) with
different sensitivity levels are also used for damage detection in structures. Advantages and disadvantages of different
available techniques depend on the type of damage to be detected and on the test conditions in which sophisticated
laboratory techniques can give highly accurate results. For example, Penetrant-enhanced X-radiography, which utilizes a
radio-opaque liquid to infiltrate the examined area, can be used to detect matrix cracks and delaminations. The main
drawback of this technique is that it can resolve only damage connected to the surface, while internal defects impossible to
fill with the dye may remain undetected [36]. Ultrasonic techniques rely on the use of high-frequency mechanical
oscillations for damage detection by evaluating the signal amplitude and/or the time-of-flight of the ultrasonic signal. On
the contrary, matrix cracks, lying perpendicularly to the surface, and fiber fracture paths are difficult to detect because they
do not offer the wide enough reflecting surface which delaminations present [36]. Due to the complex features of damage
mechanisms, more than one method is usually required for a complete non-destructive evaluation of induced damages. The
modal-based methods are global in nature and can be used as a complement to local non-destructive techniques.

In this paper, we present a fuzzy logic system (FLS) for damage detection using curvature damage factor. Both single and
multiply damaged structures with uncertainties in structural geometric properties as well as measurement noise are
considered. Monte Carlo simulation is used for calculating the variation in the structure’s curvature damage factor because
of uncertainty in the structural parameter. The results of the MCS are used to develop the fuzzy logic system.

2. Modeling of beam

An Euler–Bernoulli beam structure is considered for damage detection in this study. The governing equation of motion
for free vibration analysis is given by

q2

qx2
EIðxÞ

q2wðx; tÞ

qx2

" #
þmðxÞ

q2wðx; tÞ

qt2
¼ 0 (1)

where EIðxÞ is the flexural rigidity of the beam, mðxÞ is mass per unit length of the beam and wðx; tÞ is the transverse
displacement of the beam reference axis. The beam equation is solved for natural frequencies using the finite element
method [37]. The beam is discretized into a number of beam finite elements, with transverse displacement and slope as
nodal degrees of freedom and cubic interpolation functions.

For an n degree of freedom system, the equation of motion in discrete form is obtained after assembly of the element
matrices and application of the boundary conditions.

M €qþ Kq ¼ 0 (2)

Here M is the n� n mass matrix of the system, K is the n� n stiffness matrix of the system, q is the n� 1 vector of nodal
displacements. We seek a solution of the form q ¼ U eðiotÞ, which results in the eigenvalue problem:

KF ¼ o2MF (3)

Solving this eigenvalue problem we get n eigenvalues (o) and n eigenvectors (F) which represent the natural frequencies
and natural mode shapes of the system, respectively.
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3. Modeling of damage

Damages like crack or delamination result in the reduction of stiffness of a structure locally. Damage in an element is
modeled with a damage parameter representing reduction in flexural rigidity of the element. The damage parameter in
percentage, D is defined by [35]

D ¼
EIðuÞ � EIðdÞ

EIðuÞ
100 (4)

where E is Young’s modulus of the beam material, I is area moment of inertia of the beam element and the superscripts u

and d represent the undamaged and damaged states, respectively.
Two damage conditions are considered. The first case is when the beam has single damage. In this case, the beam is

divided into five segments of equal lengths, labeled as ‘‘Root’’, ‘‘Inboard’’, ‘‘Center’’, ‘‘Outboard’’ and ‘‘Tip’’ as shown in Fig. 1.
Hence ‘‘Root’’ ranges from 0 to 20 percent of the blade, ‘‘Inboard’’ from 20 to 40 percent, ‘‘Center’’ from 40 to 60 percent,
‘‘Outboard’’ from 60 to 80 percent and ‘‘Tip’’ from 80 to 100 percent. Damage is individually considered in these locations.

The second case is when the beam has multiple damages. Since all possible combinations of multiple damages is very
large, a sample of cases is selected to study multiple damages, as has been done by other researchers [16,17]. The beam is
divided into 10 segments of equal lengths as shown in Fig. 2. Damage is implanted into two locations along the beam. The
first damage location referred as ‘‘Rootmultiple’’ consists of first and sixth segments from the fixed end spanning 0–10
Advisory Level II

Maintenence Action

Undamaged

Slight Damage

Moderate Damage

Severe Damage

No Action

Advisory Level I

Alert

Warning LevelDamage Level

20% 20% 20%20%20%

Inboard CenterRoot h1h2

Taper Ratio = h1 / h2 = 0.75

x

y

Outboard Tip

Fig. 1. Schematic representation of beam structure and damage detection system.

Center_multiple
Root_multiple

Tip_multiple

Inboard_multiple
Outboard_multiple

Fig. 2. Schematic representation of the locations of multiple damages in the beam (each segment spans 10 percent of the beam length).
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percent and from 50 to 60 percent of the blade. The second damage location ‘‘Inboardmultiple’’ consists of second and
seventh segments spanning 10–20 percent and from 60 to 70 percent of the blade. The third damage location
‘‘Centermultiple’’ consists of third and eighth segments spanning 20–30 percent and from 70 to 80 percent of the blade. The
fourth damage location ‘‘Outboardmultiple’’ consists of fourth and ninth segments spanning 30–40 percent and from 80 to
90 percent of the blade. The fifth damage location ‘‘Tipmultiple’’ consists of fifth and tenth segments from the fixed end of
the beam spanning 40–50 percent and from 90 to 100 percent of the blade.

The structural damage in each segment is simulated by stiffness reduction (D) of 20 percent, 40 percent and 60 percent.
These damages are classified as ‘‘Slight Damage’’, ‘‘Moderate Damage’’ and ‘‘Severe Damage’’, respectively. Damage sizes
below ‘‘Slight Damage’’ are classified as ‘‘Undamaged’’ and damage sizes greater than ‘‘Severe Damage’’ are classified as
‘‘Catastrophic Damage’’. This type of representation of structural damage along various locations of the beam helps in
development of a user-friendly decision system.

4. Damage indicator

The curvature damage factor is used as damage indicator. CDF is obtained by averaging the difference between the
modal curvatures of the damaged and undamaged beam for the first six modes. Reduction in the stiffness at some location
for the damaged structure results in an increase of the local modal curvature.

Central difference approximation is used to estimate mode shape curvatures from the mass normalized mode shapes
obtained from the finite element analysis. Numerically, it is obtained as [11]

n̄i;j ¼
fðiþ1Þ;j � 2fi;j þfði�1Þ;j

h2
(5)

where n̄i;j represents modal curvature, first subscript i represents node number, second subscript j represents the
corresponding mode number, h represents element length as the beam is discretized with elements of equal length and fi;j

represents the mass normalized modal value for the ith node in the jth mode.
The change in mode shape curvature (CMSC) is obtained by subtracting the undamaged mode shape curvature vector

from the respective damaged MSC, given by

Dn̄i;j ¼ n̄ðdÞ
i;j
� n̄ðuÞ

i;j
(6)

The change in mode shape curvature obtained at each node of the beam FE model is normalized to the same range using

Dni;j ¼ 1þ
Dn̄i;j

maxðDn̄i;jÞ �minðDn̄i;jÞ

" #2

(7)

The curvature damage factor is obtained by averaging these normalized change in mode shape curvatures over all the
selected modes. Mathematically, CDF for ith node for first N modes is given by

CDFi ¼
1

N

XN
j¼1

Dni;j (8)

Therefore, different combinations of the three damage levels with five different locations of the beam give different sets of
measurement deltas (CDF), which are used to create the knowledge base composed of fuzzy rules. All results in the paper
are for the normalized modal curvatures.

5. Uncertainty modeling

There is always some difference between predictions by mathematical models and test results due to associated
uncertainties. Modeling uncertainty can result from uncertainties in geometric properties, material property and also due
to assumptions made in the modeling. Randomness in geometric property (taper angle of the beam) is considered in this
study as a representation of uncertainty in FE modeling. Investigation from literature shows that the randomness in the
geometric properties in the thickness direction (y-direction in Fig. 1) for beam type structures is usually taken from 0.0
percent to 2.0 percent [38]. Hence to capture the uncertainty, we take 1.0 percent coefficient of variation (COV) of the
thickness (y-direction in Fig. 1) at the free end of the cantilever beam, which in turn results in uncertainty in the beam
taper angle. COV is a normalized measure of the dispersion of a probability distribution. COV is defined as the ratio of the
standard deviation to the mean for a non-zero mean random process.

In addition to modeling uncertainty, noise may be present in the measured data. This measurement uncertainty
can originate from sensor noise and measurement errors. Though the use of modern instruments has reduced
measurement uncertainty, it can never be eliminated. It can therefore be expected that uncertainty is present in the
measurement deltas (CDF). We shall assume uniformly distributed noise of about 10 percent to be present in the
measurement delta [35].
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The noisy simulated measurement delta (CDFnoisy), obtained after adding measurement noise to the randomized
measurement delta (CDFrandom) is given by [28]

CDFnoisy ¼ CDFrandomð1þ uaÞ (9)

where CDFrandom is the randomized measurement delta due to uncertainty in geometric property, u is a random number in
the interval ½�1;1� and a is a noise level parameter.

6. Uncertainty quantification

A tapered steel cantilever beam is used for the numerical results. Relevant properties of the beam are shown in Table 1
[29]. First six natural frequencies for the undamaged beam are 147, 820, 2217, 4304, 7088 and 10 569 rad per second,
respectively. The beam is divided into 20 finite elements of equal length. Each segment spanning 20 percent of the blade in
Fig. 1 is therefore divided into four finite elements for the single damage case. For the multiple damage case in Fig. 2, each
segment consists of two elements for the damage at each location.

The Monte Carlo simulation method [31,39,40] and perturbation method [41,42] are widely used for the dynamic
characteristics analysis of structures with random parameters. Papadopoulos et al. [43] proposed finite element method-
based fast Monte Carlo simulation procedure (FEM-FMCS) for the analysis of the mean and mean square response of stochastic
structural systems whose material properties were described by random fields. Stefanou and Papadrakakis [44] used the
spectral representation method for the description of the random fields in conjunction with MCS for the computation of the
response variability of shell structures. We use MCS in this study as it is a non-intrusive method which is easy to implement.

The variation in structural parameter represents the uncertainty associated with FE modeling and the added noise in the
calculated measurement deltas simulates the uncertainty present in the experimental measurement. A large number of
measurement deltas (CDFrandom) are obtained using Monte Carlo simulation on the beam FE model by varying the
structural parameter as a random variable with COV of 1 percent. The spread of the measurement deltas are estimated from
MCS for 5000 input data points of the random variable.

Figs. 3 and 4 show the deterministic value and the minimum and maximum values of the damage indicator obtained
using the MCS with geometric uncertainty. There are large overlaps in the measurement delta CDF’s (the damage indicator)
for the faults with different damage levels at same location due to uncertainty in the physical parameter itself. The peaks of
the measurement CDF are good indicators for damage locations for single damage (Fig. 3) as well as multiple damage (Fig. 4).

If measurement noise is added in addition to geometric uncertainty, the overlaps increase even further as shown in Figs.
5 and 6, reducing the probability of the success of damage identification. In these cases measurement noise of a ¼ 0:10 is
added. It is obvious from Figs. 3–6 that the CDF clearly identifies the damage locations but it is very difficult to quantify the
damage size in the presence of uncertainty. Also, automated reasoning is needed to convert the CDF data (measurement
deltas) in graphical form to a message indicating the location and size of damage. A fuzzy logic system is now developed to
perform this automated reasoning function under modeling and measurement uncertainty.

7. Fuzzy logic system

Fuzzy set theory is a marvelous tool for modeling the kind of uncertainty associated with vagueness, with imprecision
and/or with a lack of information regarding a particular element of problem at hand [45]. A typical fuzzy logic system uses
four basic components: rules, fuzzifier, inference engine and defuzzifier (Fig. 7) to nonlinearly map an input feature vector
into a scalar output. The development of the FLS is briefly described in this section.

7.1. Input and output

Inputs to the FLS are measurement deltas and outputs are structural damage size and location. We have a measurement
vector (CDFi) represented by x and five damage locations represented by y. The objective is to find a functional mapping
between x and y. Mathematically, this can be represented as

y ¼ FðxÞ (10)
Table 1
Material and geometric properties of the beam.

Young’s modulus (E) ¼ 2:0� 105 N=mm2

Width of the beam ¼ 24 mm

Height of the beam at fixed end ðh1Þ ¼ 10 mm

Height of the beam at free end ðh2Þ ¼ 7:5 mm

Taper ratio ðh2=h1Þ ¼ 0:75

Length ¼ 600 mm

Mass density ¼ 7840� 10�9 kg=mm3
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where y ¼ fRoot; Inboard; Center; Outboard; TipgT for single damage, or y ¼ fRootmultiple; Inboardmultiple;Centermultiple;

Outboardmultiple;Tipmultipleg
T for multiple damage, and x ¼ fCDFig

T, where i varies from 1 to 21. Thus, CDFi represents the
noisy CDF vector corresponding to the given structural fault.
7.2. Fuzzification

We consider two different damage conditions. First, when the structure has single damage and second, when the
structure has multiple damage locations. The structural damages are considered as crisp numbers.

To get a degree of resolution of the extent of damage, each of these damage locations is allowed several levels of damage
and split into linguistic variables. For example, consider ‘‘root’’ as a linguistic variable. It can be decomposed into a set of
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terms: TðrootÞ ¼ ðUndamaged; Slight Damage; Moderate Damage; Severe Damage; Catastrophic DamageÞ, where each
term in TðrootÞ is characterized by a fuzzy set in the universe of discourse UðrootÞ ¼ f0;70g corresponding to the
percent reduction in stiffness used to model damage. The other structural damage variables are fuzzified in a similar
manner.

The measurement deltas CDFi are also treated as fuzzy variables. To get a high degree of resolution, they are further split
into linguistic variables. For example, consider CDFi as a linguistic variable. It can be decomposed into a set of terms:
TðCDFiÞ ¼ ðNegligible; Very Low; Low; Low Medium; Medium; Medium High; High, Very HighÞ, where each term in
TðCDFiÞ is characterized by a fuzzy set in the universe of discourse UðCDFiÞ ¼ f0:5;2:5g. Measurement deltas larger than
covered by the universe of discourse will represent an extensive structural damage indicative of a catastrophic failure and
are not considered. We want to detect the damage much before it becomes catastrophic.
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Fuzzy sets with Gaussian membership functions are used for the input variables. These fuzzy sets can be defined using
the following equation:

mðxÞ ¼ e�0:5ððx�mÞ=sÞ2 (11)

where m is the midpoint of the fuzzy set and s is the spread (standard deviation) associated with the variable. Gaussian
fuzzy membership functions are quite popular in the fuzzy logic literature, as they are the basis for the connection between
fuzzy system and radial basis functions (RBF) neural networks [46]. Table 2 gives the linguistic measure associated with
each fuzzy set and the midpoint of the set for each measurement delta. The midpoints of the fuzzy sets are selected to
capture the variability of the damage indicator (CDFi) due to uncertainty at different damage conditions. We select different
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spacings between two successive fuzzy sets. This maximizes the probability of capturing the variability of a measurement
delta in any one of the fuzzy sets for each nodal point for a damage case. A proper tuning of the membership functions is
required as each time the mean and standard deviation of the damage indicator for a node change for every different fault
(Figs. 3 and 4). Even different damage levels at a location force different membership functions to be selected for the fuzzy
sets. Hence a compromise is made in selecting the membership functions to maximize the overall success rate of the FLS
while maintaining uniqueness of fuzzy rules.

The effective width of a fuzzy set (A) can be typically given by half of the difference between the midpoints of the
adjacent fuzzy set to the right of A and the adjacent fuzzy set to the left of A. This is true if all the fuzzy sets are defined by
the membership functions having same standard deviation. We require different effective width of fuzzy sets at different
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Table 2
Gaussian fuzzy sets.

Linguistic measure Symbol Midpoint CDF

Negligible N 0.70

Very Low VL 1.00

Low L 1.25

Low–Medium LM 1.50

Medium M 1.70

Medium–High MH 1.90

High H 2.10

Very High VH 2.30
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Fig. 8. Fuzzy sets representing measurement deltas over universe of discourse (0.5–2.5).
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CDF levels. Figs. 3 and 4 show that lower CDF levels require higher effective width and higher CDF levels require lower
effective width to capture the variability and to maintain the uniqueness. Hence we select variable spacing between the
midpoints of membership functions for the fuzzy sets at different CDF levels (Fig. 8). The information of variability of the
damage indicator obtained by the probabilistic simulation is thus exploited to develop the fuzzy logic system.

Fig. 8 shows the membership functions for each of the eight input fuzzy sets. The standard deviations for
the membership functions are selected as 0.07 to provide enough intersection and symmetry between the fuzzy sets
so as to give good accuracy of detection [35]. Some level of intersection between fuzzy sets is needed to address
the uncertainty of measurement inputs in the FLS. Though probability and fuzzy logic have been seen as disparate topics in
handling uncertainty, we can link them through the use of Gaussian fuzzy sets as they are based on normal distribution
functions.
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Table 3
Rules for fuzzy system for ‘‘Undamaged’’ and the faults at ‘‘Root’’ and ‘‘Inboard’’ for Single damage case.

Node no. Measurement deltas (CDF)

Undamaged Damage at Root Damage at Inboard

Undamaged Slight Moderate Severe Slight Moderate Severe

Damage Damage Damage Damage Damage Damage

1 VL LM MH H N VL VL

2 VL L LM LM VL VL VL

3 VL L LM M VL VL VL

4 VL LM M M N VL VL

5 VL VL VL VL L L LM

6 VL VL VL VL L LM M

7 VL VL VL VL L LM M

8 VL VL VL VL L M M

9 VL VL VL VL L L LM

10 VL VL VL VL VL VL VL

11 VL N VL VL N VL VL

12 VL VL VL VL VL VL VL

13 VL N VL VL N VL VL

14 VL VL VL VL VL VL VL

15 VL VL VL VL VL VL VL

16 VL VL VL VL VL VL VL

17 VL VL VL VL VL VL VL

18 VL VL VL VL N VL VL

19 VL VL VL VL VL VL VL

20 VL VL VL VL VL VL VL

21 VL VL VL VL VL VL VL
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7.3. Rule generation

Rules for the fuzzy system are obtained by fuzzification of the numerical values obtained from the finite element
analysis using the following procedure [35]:
1.
 The CDF vector corresponding to a given structural fault is input to the FLS and the degree of membership of the
elements of CDF are obtained. Therefore, each measurement delta has eight degree of memberships based on the
linguistic measures in Table 2.
2.
 Each measurement delta is then assigned to the fuzzy set with maximum degree of membership.

3.
 One rule is obtained for each fault by relating the measurement deltas with maximum degree of membership to a fault.
The fuzzy rules are given in Tables 3–6. The linguistic symbols used in these tables are defined in Table 2. There is a
separate fuzzy rule set for each fault location which can be interpreted as a pattern classifier.

The rule for the ‘‘Undamaged case’’ is given in Table 3 and shows ‘‘Very Low’’ level of change in all the measurements.
Rules for the fault ‘‘Damage at root’’ at different damage severity level for the CDF vector are also given in Table 3. Here we
clearly see the different levels of changes for the various measurements. As damage becomes more severe, the indicators
move from ‘‘Low–Medium’’ to ‘‘Medium–High’’ and ‘‘High’’ levels. The rules for the other faults given in Tables 3–6 can be
similarly interpreted.

A close observation of the tables from Tables 3–6 shows that each rule represents a unique signature and is different
from all the other rules. Therefore, the fuzzy system is a good pattern classifier. These rules provide a knowledge base and
represent how a human engineer would interpret data to isolate structural damage using changes in CDF’s. It is difficult for
a human to memorize and process such a large number of patterns. However, the task is straight forward for computer
interpretation.
8. Damage assessment

Once the fuzzy rules are applied to a given measurement, we have a set of degree of memberships for each fault. For
fault isolation, we are interested in the most likely fault. Therefore, the so-called maximum matching method has been
widely used for defuzzification in damage detection work [47,48]. In this paper, we develop a new defuzzification technique
called the ‘‘sliding window method’’ using CDF vectors. This method is briefly described below. Details about numerical
implementation of the sliding window method using scalar eigenvalues representing frequencies can be found in [30].
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Table 5

Rules for fuzzy system for ‘‘Undamaged’’ and the faults at ‘‘Rootmultiple’’ and ‘‘Inboardmultiple’’ for multiple damage case.

Node no. Measurement deltas (CDF)

Undamaged Damage at Rootmultiple Damage at Inboardmultiple

Undamaged Slight Moderate Severe Slight Moderate Severe

Damage Damage Damage Damage Damage Damage

1 VL LM M M VL VL VL

2 VL VL L L VL L L

3 VL VL L LM VL L L

4 VL VL VL VL L M M

5 VL VL VL VL VL L LM

6 VL VL VL VL VL VL VL

7 VL VL VL VL VL VL VL

8 VL VL VL VL N VL VL

9 VL VL VL VL VL VL VL

10 VL N VL VL VL VL VL

11 VL VL L LM VL VL VL

12 VL LM M MH N VL VL

13 VL VL L LM VL L LM

14 VL N VL VL L M M

15 VL VL VL VL VL L LM

16 VL VL VL VL N VL VL

17 VL VL VL VL VL VL VL

18 VL N VL VL N VL VL

19 VL N VL VL N VL VL

20 VL VL VL VL VL VL VL

21 VL VL VL VL VL VL VL

Table 4
Rules for fuzzy system for the faults at ‘‘Center’’, ‘‘Outboard’’ and ‘‘Tip’’ for Single damage case.

Node no. Measurement deltas (CDF)

Damage at Center Damage at Outboard Damage at Tip

Slight Moderate Severe Slight Moderate Severe Slight Moderate Severe

Damage Damage Damage Damage Damage Damage Damage Damage Damage

1 N N VL VL VL VL VL VL VL

2 VL VL VL VL VL VL VL VL VL

3 VL VL VL VL VL VL VL VL VL

4 VL VL VL VL VL VL VL VL VL

5 VL VL VL VL VL VL VL VL VL

6 VL VL VL VL VL VL VL VL VL

7 N VL VL VL VL VL VL VL VL

8 VL VL VL VL VL VL VL VL VL

9 L L LM VL VL VL VL VL VL

10 LM LM MH VL VL VL VL VL VL

11 LM LM MH VL VL VL VL VL VL

12 LM M H N N VL VL VL VL

13 VL L LM L LM LM VL VL VL

14 N VL VL LM M MH VL VL VL

15 VL VL VL LM M MH VL VL VL

16 VL VL VL LM M MH VL VL VL

17 VL VL VL L LM LM L L LM

18 VL VL VL N N VL M MH MH

19 VL VL VL VL VL VL LM M MH

20 VL VL VL VL VL VL L LM LM

21 VL VL VL VL VL VL VL L LM
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8.1. Sliding window method

We take a window with maximum and minimum limits as represented by the maximum CDFnoisy and the minimum
CDFnoisy of a set of measurement CDFnoisy for any given arbitrary encountered fault. Then this window is slid over the fuzzy
rule base sets with the maximum move limit (M) being equal to the difference between the midpoints of two successive
fuzzy sets. The maximum move limit for the negative side is CDFnoisy �M=2 and the maximum move limit for the positive
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Table 6

Rules for fuzzy system for the faults at ‘‘Centermultiple’’, ‘‘Outboardmultiple’’ and ‘‘Tipmultiple’’ for multiple damage case.

Node no. Measurement deltas (CDF)

Damage at Centermultiple Damage at Outboardmultiple Damage at Tipmultiple

Slight Moderate Severe Slight Moderate Severe Slight Moderate Severe

Damage Damage Damage Damage Damage Damage Damage Damage Damage

1 N VL VL VL VL VL VL VL VL

2 VL VL VL VL VL VL VL VL VL

3 VL VL VL VL VL VL VL VL VL

4 N VL VL VL VL VL L VL VL

5 L L LM VL VL VL VL VL VL

6 LM LM M VL VL VL VL VL VL

7 L L LM VL L LM VL VL VL

8 VL VL VL LM M MH N VL VL

9 VL VL VL L L LM VL LM LM

10 VL VL VL VL VL VL VL MH MH

11 VL VL VL VL VL VL VL L LM

12 VL VL VL VL VL VL N VL VL

13 VL VL VL VL VL VL VL VL VL

14 VL VL VL VL VL VL L VL VL

15 L LM LM VL VL VL VL VL VL

16 LM M MH N VL VL N VL VL

17 L LM M VL L L VL VL VL

18 N VL VL LM M MH N VL VL

19 VL VL VL L L LM N LM M

20 VL VL VL VL VL VL VL LM M

21 VL VL VL L LM M VL VL LM
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side is CDFnoisy þM=2. At each step, the window is slid over the fuzzy sets (i.e. each of the elements of CDFnoisy vector of
the encountered fault given a step increment), the FLS identifies a fault with highest degree of membership and each of the
different identified faults is counted. For fault isolation, the fault with the maximum count identified by the FLS is selected
as the most likely fault.

The FLS is tested for the measurement deltas obtained from FE model considering randomness in the structural
parameter further contaminated with measurement noise. In each case, 5000 noisy data points are generated for each
seeded fault and the percentage success rate for the fuzzy system in isolating a fault is calculated.

If the uncertainty level is larger than or close to the changes in the damage indicator due to damage, the true
information would be submerged in the noise. Then the actual damaged members may not be identified accurately and/or
the healthy members may be wrongly detected as damaged resulting in a false warning [32]. However, this being the case,
the FLS tested with these noisy data (CDFnoisy) having large variation and overlaps gives very good success rate. We will
next study the effects of different levels of measurement and geometric uncertainty on the damage assessment capability
of the FLS. Note that the FLS was developed with a geometric uncertainty in taper of 1 percent COV with a measurement
uncertainty a ¼ 0:10.

Tables 7 and 8 show results obtained for fault isolation using both the methods (i.e. (1) with highest degree of
membership [35] and (2) with sliding window technique). The sliding window method gives a higher success rate for fault
isolation than the FLS [35] based on maximum degree of membership for fault classification. The increase in success rate of
about 14 percent is quite significant. Further results are obtained using the sliding window defuzzifier.

8.2. Simulations with uncertain data

We consider several combinations of geometric uncertainty and noise levels to evaluate the robustness of the FLS. The
FLS defined by the rules of CDF vector inputs is tested for the noisy measurement deltas with different levels of
measurement noise (a ¼ 0:10 and 0:15). These CDF vectors also include the effect of geometric uncertainty in the beam
taper ratio. Three different levels of geometric uncertainty in beam taper ratio (i.e. 0.5 percent, 1.0 percent and 1.5 percent
of COV as taper is a linear function of the beam height) are considered. Table 9 shows the success rate for each rule for
different values of a and geometric uncertainty for the single damage case. Table 10 shows the success rate for each rule for
different values of a and geometric uncertainty for the multiple damage case. These results are summarized in bar plots
shown in Fig. 9 for single damage case and Fig. 10 for multiple damage case. The results show that the FLS is robust to
uncertainty.

The FLS tested with different levels of measurement noise gives an average success rate of 94.62 percent for added noise
level a ¼ 0:10 and 87.81 percent for added noise level a ¼ 0:15 when the beam has single damage and geometric
uncertainty of 1 percent COV. The FLS classifies multiple damages with similar accuracies. It gives an average success rate
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Table 8
Success rate in percent for the FLS with different defuzzification techniques at noise level ðaÞ ¼ 0:10 for multiple damage case with geometric uncertainty

of 1.0 percent COV in beam taper angle.

Rule no. Highest degree Sliding window

of membership [35]

Undamaged 88.42 99.68

Slight Damage at Rootmultiple 76.24 93.14

Moderate Damage at Rootmultiple 81.27 95.43

Severe Damage at Rootmultiple 80.53 96.21

Slight Damage at Inboardmultiple 77.85 89.64

Moderate Damage at Inboardmultiple 83.73 98.20

Severe Damage at Inboardmultiple 77.54 92.13

Slight Damage at Centermultiple 79.63 90.47

Moderate Damage at Centermultiple 83.76 97.30

Severe Damage at Centermultiple 81.78 93.76

Slight Damage at Outboardmultiple 76.42 88.35

Moderate Damage at Outboardmultiple 77.81 93.19

Severe Damage at Outboardmultiple 80.72 95.38

Slight Damage at Tipmultiple 79.34 90.61

Moderate Damage at Tipmultiple 75.89 93.27

Severe Damage at Tipmultiple 79.65 93.60

Average SR 80.03 93.77

Table 7
Success rate in percent for the FLS with different defuzzification techniques at noise level ðaÞ ¼ 0:10 for single damage case with geometric uncertainty of

1.0 percent COV in beam taper angle.

Rule no. Highest degree Sliding window

of membership [35]

Undamaged 88.42 99.68

Slight Damage at Root 72.63 94.25

Moderate Damage at Root 77.31 93.63

Severe Damage at Root 82.73 97.41

Slight Damage at Inboard 75.92 87.61

Moderate Damage at Inboard 83.53 96.35

Severe Damage at Inboard 86.21 98.32

Slight Damage at Center 79.01 92.37

Moderate Damage at Center 81.46 95.92

Severe Damage at Center 79.52 94.63

Slight Damage at Outboard 71.53 86.31

Moderate Damage at Outboard 87.87 96.58

Severe Damage at Outboard 81.89 98.46

Slight Damage at Tip 81.62 94.20

Moderate Damage at Tip 79.37 93.73

Severe Damage at Tip 82.48 94.52

Average SR 80.71 94.62
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of 93.77 percent for added noise level a ¼ 0:10 and 86.85 percent for added noise level a ¼ 0:15 when the beam has
multiple damage and geometric uncertainty of 1 percent COV. It also classifies the undamaged structure with an accuracy
of 99.23 percent for added noise level up to a ¼ 0:15 on the measurement deltas, minimizing the possibility of false alarms.
For noise level of a ¼ 0:15, the FLS shows degradation in damage detection as the overlaps in the damage evaluation
parameter increases and it becomes very difficult to classify the damage. But still, the proposed FLS gives very good
accuracy in classifying ‘‘Slight Damage at Tip’’, which is the most difficult damage to detect in a cantilever beam structure.

Typically, model-based damage detection algorithms are developed using a good validated baseline model of the
proposed structure, for example, an aircraft wing or helicopter rotor blade. The damaged conditions of the structure are
simulated using the mathematical model. The damage detection algorithm is then deployed across a fleet of structures. In
such cases, variability exists among the structures due to random uncertainty in addition to the measurement uncertainty
due to sensors. The proposed approach in this paper results in a robust damage detection system which is less sensitive to
both measurement and model uncertainty. By connecting probabilistic MCS to the development of Gaussian fuzzy systems,
we also connect the disparate areas of probability and fuzzy logic in a novel manner to address uncertainty issues in
damage detection.



ARTICLE IN PRESS

Table 9
Success rate in percent for the FLS with sliding window defuzzifier at different noise levels (a) for single damage case with different geometric uncertainty

(b) in beam taper angle.

Rule no. COV of geometric uncertainty (b)

b ¼ 0:5 percent b ¼ 1:0 percent b ¼ 1:5 percent

a ¼ 0:10 a ¼ 0:15 a ¼ 0:10 a ¼ 0:15 a ¼ 0:10 a ¼ 0:15

Undamaged 99.83 99.59 99.68 99.23 99.47 99.08

Slight Damage at Root 98.12 92.13 94.25 88.34 85.25 82.13

Moderate Damage at Root 96.45 91.53 93.63 88.10 89.24 83.24

Severe Damage at Root 99.21 95.67 97.41 90.27 92.33 86.57

Slight Damage at Inboard 93.46 86.37 87.61 80.61 81.63 78.59

Moderate Damage at Inboard 100 94.86 96.35 90.24 93.26 86.63

Severe Damage at Inboard 100 94.98 98.32 90.86 93.11 84.23

Slight Damage at Center 96.72 88.63 92.37 86.43 81.27 76.14

Moderate Damage at Center 100 98.18 95.92 90.23 92.17 85.73

Severe Damage at Center 97.94 92.96 94.63 85.81 87.07 81.38

Slight Damage at Outboard 97.31 86.38 86.31 80.57 79.30 72.94

Moderate Damage at Outboard 99.01 94.72 96.58 86.37 89.61 83.41

Severe Damage at Outboard 99.76 95.53 98.46 89.52 95.35 84.18

Slight Damage at Tip 98.17 96.16 94.20 86.56 87.12 81.34

Moderate Damage at Tip 95.43 93.41 93.73 86.64 85.15 81.13

Severe Damage at Tip 99.51 97.14 94.52 85.21 89.11 81.01

Average SR 98.18 93.64 94.62 87.81 88.78 82.98

Table 10
Success rate in percent for the FLS with sliding window defuzzifier at different noise levels (a) for multiple damage case with different geometric

uncertainty (b) in beam taper angle.

Rule no. COV of geometric uncertainty (b)

b ¼ 0:5 percent b ¼ 1:0 percent b ¼ 1:5 percent

a ¼ 0:10 a ¼ 0:15 a ¼ 0:10 a ¼ 0:15 a ¼ 0:10 a ¼ 0:15

Undamaged 99.83 99.59 99.68 99.23 99.47 99.08

Slight Damage at Rootmultiple 95.21 90.37 93.14 86.37 86.27 81.82

Moderate damage at Rootmultiple 98.23 92.20 95.43 86.67 88.13 83.10

Severe damage at Rootmultiple 99.17 95.86 96.21 88.32 90.19 82.72

Slight Damage at Inboardmultiple 94.72 87.16 89.64 82.85 85.34 78.63

Moderate damage at Inboardmultiple 100 95.27 98.20 90.30 94.01 85.89

Severe damage at Inboardmultiple 97.62 91.14 92.13 84.23 86.76 81.37

Slight Damage at Centermultiple 95.17 90.63 90.47 85.21 87.17 82.75

Moderate damage at Centermultiple 99.05 96.47 97.30 90.63 91.61 87.12

Severe damage at Centermultiple 96.35 91.52 93.76 86.66 87.87 83.60

Slight Damage at Outboardmultiple 93.83 87.37 88.35 80.74 84.19 76.81

Moderate damage at Outboardmultiple 96.21 92.17 93.19 85.52 97.46 81.67

Severe damage at Outboardmultiple 98.07 92.10 95.38 88.26 89.27 82.65

Slight Damage at Tipmultiple 94.93 91.84 90.61 84.73 86.07 80.77

Moderate damage at Tipmultiple 97.54 94.89 93.27 86.30 87.74 81.38

Severe damage at Tipmultiple 99.73 96.66 93.60 83.56 88.83 79.80

Average SR 97.23 93.01 93.77 86.85 89.40 83.07
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8.3. Closing remarks

Since the primary aim of the paper is to demonstrate a new damage detection algorithm, the results in this work were
illustrated for a cantilever beam using curvature-based damage indicator. There are some limitations of the damage
indicator and structure selected which need to be pointed out.

The success of the FLS depends on the knowledge base available for damage identification. Thus, the FLS cannot detect a
damage which does not have a rule representation available with the FLS. It can possibly detect a damage having closest
features (damage indicators) to that of the existing damage condition. It is possible that we loose uniqueness of the rules
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Fig. 9. Plot for success rate of the fuzzy logic system at different geometric uncertainty and noise levels for ‘‘single damage case’’.
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Fig. 10. Plot for success rate of the fuzzy logic system at different geometric uncertainty and noise levels for ‘‘multiple damage case’’.
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for two different damage states for a complex structure (or possibly for damages occurring at more refined levels). Then
we would need more powerful damage indicators based on wavelet or HHT transforms [49,50], which are more sensitive
and localized with respect to damage to maintain the uniqueness of the fuzzy rules. These issues are subjects for
future research. Though using numerical simulations with added noise is an established approach for developing and
testing damage detection algorithms [11,35], experimental validation is the true test. Again, that is a subject for future
research.
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9. Conclusions

A fuzzy logic system with a new fault isolation (sliding window) technique is developed for damage detection in
structures using the curvature damage factor vector. The CDF vector calculated from changes in the mode shape curvature
vectors corresponding to the first six modes of the beam structure is used as a representative damage indicator. Test results
are obtained to simulate the uncertainties in geometric properties of the beam as well as noise in the measurement deltas.
The following conclusions are made from this study:
1.
 There are large overlaps in the damage evaluation parameter for different damage levels due to randomness in the
geometric properties itself, which increases with the noise contamination. These overlaps cause difficulties in damage
evaluation.
2.
 CDF clearly indicates the location of existing damage in single as well as multiple damage situations in the presence of
uncertainty. This also reduces the conditions for false alarms as the existence of damage is clearly detectable. But
quantification of the damage is very difficult in the presence of geometric and measurement uncertainties as the
damage indicator (CDF) shows large overlaps for different damage levels.
3.
 The proposed FLS with newly proposed sliding window fault isolation technique detects damage with an average
success rate of 94.62 percent for single damage case and 93.77 percent for multiple damage case. These results are for
an added noise level a ¼ 0:10 on the measurement deltas.
4.
 The FLS degrades in detecting damages for increasing noise levels as the overlaps in the damage evaluation parameter
increase considerably, creating difficulties for damage assessment.
5.
 The new FLS tested with different levels of measurement noise classifies damages with an average accuracy of 87.73
percent and 86.94 percent for added noise level a ¼ 0:15 in single and multiple damage conditions, respectively. It also
classifies the undamaged structure with an accuracy of 99.23 percent for added noise level up to a ¼ 0:15 on the
measurement deltas, avoiding the possibility of false alarms.
6.
 Even a slight damage at the tip location is correctly classified by the FLS.

Based on the numerical results in this work, the fuzzy system based on curvature damage factor is proposed as a robust tool
for structural damage detection.
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